
Object-Oriented

Programming and Classes

OOP / Slide 2 Self Declaration

The content is exclusively meant for academic

purpose and for enhancing teaching and

learning. Any other use of economic /commercial

purpose is strictly prohibited. The users of the

content shall not distribute, disseminate or share

it with anyone else and its use is restricted to

advancement of individual knowledge .The

information provided in this e-content is authentic

and best as per my knowledge.

Mr.

Vijay kant Sharma

Department of computer application

Jagatpur P.G. College Varanasi

OOP / Slide 3

Basic, built-in, pre-defined types: char, int, double, …

Variables + operations on them

int a, b,c;

c=a+b;

c=a mod b;

…

More complicated, user-defined types: classes

Motivation

Variables → objects

Types → classes

OOP / Slide 4

int main()

{

int x,y,z;

int a,b,c;

a=f1(x);

b=f2(y);

c=f3(z);

…

}

int f1()

{

}

int f2()

{

}

int f3()

{

}

int main()

{

A a;

B b;

C c;

a.f1();

b.f2();

c.f3();

…

}

Class A

{

Int x;

Int f1();

}

Class B

{

Int y;

Int f2()

}

Class C

{

Int z;

Int f3();

}

procedural programming:

a sequence of ‘procedures’

Object oriented programming:

a sequence of ‘objects’!

OOP / Slide 5

Motivation
Variables → objects

Types → classes

Procedural programming:

Low-level, closer to hardware

More intuitive, less abstract

More ‘action’ oriented

Focus on ‘action’, ‘procedure’, ‘method’

Procedure-oriented

Object-oriented programming:

High-level

More abstract

Focus on ‘what to do’ not on ‘how to do’

In the implementation of OOP,

we still need sound ‘procedure programming’ skills!

OOP / Slide 6

Motivation

We want to build user-defined (and “smart”)

objects that can answer many questions (and

perform various actions).

“What is your temperature?”

“What is your temperature in Fahrenheit?”

“What is your humidity?”

“Print your temperature in Celsius.”

OOP / Slide 7

Temperature example

Write a program that, given a temperature in Fahrenheit or
Celsius, will display the equivalent temperature in each of
the scales.

double degree = 0.0; // needs 2 items!

char scale = 'F';

To apply a function f() to a temperature, we must specify
both degree and scale:

f(degree, scale);

Also to display a temperature:
cout << degree << scale;

OOP / Slide 8

(remember that an Array is a collection of variables of

same type)

The simpliest Class (or a C-structure) can be thought of

being a collection of variables of different types

Put related variables together …

OOP / Slide 9

A first simple ‘class’ or

‘object-oriented’ solution

class Temperature {

public:

double degree;

char scale;

};

a new (user-defined) type, a composite type: Temperature!

Two member variables: degree and scale

In old C, this can be done using ‘structure’:

structure Temperature {

double degree;

char scale;

};
similar to ‘record’ in Pascal

Remark:

OOP / Slide 10

temp1.degree=54.0;

temp1.scale=‘F’;

temp2.degree=104.5;

temp2.scale=‘C’;

The dot operator for (public) members

Temperature temp1, temp2;

The modifier ‘public’ means that the member variables

can be accessed from the objects, e.g.

A C++ struct is a class in which all members are by default public.

OOP / Slide 11

void print(Temperature temp) {

cout << “The temperature is degree “

<< temp.degree << “with the scale “ <<

temp.scale << endl;

}

double celsius(Temperature temp) {

double cel;

if (temp.scale==‘F’) cel=(temp.degree-32.0)/1.8;

else cel=temp.degree;

return cel;

}

double fahrenheit(Temperature temp) {

double fa;

if(temp.scale==‘C’) fa= temp.degree *1.8+32.0;

else fa=temp.degree;

return fa;

}

Some basic operations:

Manipulation of the new type:

OOP / Slide 12

An application example:

double annualAverageCelsius(Temperature arraytemp[]) {

double av=0.0;

for (int i=0;i<12;i++) av=av+celsius(arraytemp[i]);

return av;

};

Temperature annualtemp[12];

OOP / Slide 13

Put the variables and functions together …

Actual problem:

1. Member ‘variables’ are still separated from

‘functions’ manipulating these variables.

2. However, ‘functions’ are intrinsically related to the

‘type’.

A more advanced class is a collection of (member) variables

and (member) functions

The simplest class (or a C-structure) defined this way is a collection

of (member) variables (similar to RECORD in Pascal)

“The art of programming is the art of organising complextity.”

OOP / Slide 14

Assembly the data and operations together into a class!

class Temperature{

public:

void print(); // member functions

double celsius();

double fahrenheit();

double degree; // member variables

char scale;

};

An improved Temperature class with

member functions associated

OOP / Slide 15

Operators for members
The dot operator not only for public member variables of an

object, but also for public member functions (during usage), e.g.

Temperature temp1;

temp1.celsius();

temp1.print();

1. Temp1 receives print() message and displays values stored in

degree and scale, receives celsius() message to give the

temperature in celsius …

3. The temperature are ‘smart objects’ ☺ unlike ‘stupid’ basic type objects

Comments:

2. It is not the function which is calling the object like

print(temp1) traditionally, temp1.print() → object oriented!

function →method

Function(procedure) call →message

OOP / Slide 16

double Temperature::celsius() {

double cel;

If (scale==‘F’) cel= (degree-32.0)/1.8;

else cel=degree;

return cel;

}

:: for member functions of a class (during definition)

Operators for defining member functions

:: is used with a class name while dot operator is with an object!

From the class, not from an object

Full name of the function

double celsius(double degree, char scale)

OOP / Slide 17

Using ‘private’ modifier!

Using private member variables for data protection and

information hiding

Using member functions to access the private data instead

Try to make functions ‘public’

Try to make data ‘private’

‘private’ members can only be used by member functions, nothing else!

Global

Local

OOP / Slide 18

New version of Temperature class

class Temperature{

public: // member functions

void print();

double celsius();

double fahrenheit();

private: // member variables

double degree;

char scale;

};

OOP / Slide 19

double Temperature::celsius() {

double cel;

If (scale==‘F’) cel= (degree-32.0)/1.8;

else cel=degree;

return cel;

}

OK

it can not be accessed directly by using temp1.degree!

When the datum ‘degree’ is private,

Possible only when

‘degree’ is public

or in member functions

Private member variables can only be accessed by ‘member

functions’ of the same class.

OOP / Slide 20

class Temperature{

public: // member functions

double getDegree();

char getScale();

void set(double newDegree, char newScale);

void print();

double celsius();

double fahrenheit();

private: // member variables

double degree;

char scale;

};

Using member functions to (indirectly)

access private data

OOP / Slide 21

double Temprature::getDegree() {

return degree;

}

double Temprature::getScale() {

return scale;

}

double Temprature::set(double d, char s) {

degree = d;

scale = s;

}

Some member functions on private data:

OOP / Slide 22

(Temporary) Summary:

A collection of member variables and member functions is a Class

Struct is a class with only member variables, and all of them public

‘public’ member can be used outside by dot operator

‘private’ member can only be used by member functions

Dot operator for objects and Scope resolution operator :: for class

OOP / Slide 23

class A {

public:

void f();

int x;

private:

int y;

}

void A::f() {

x=10;

y=100;

}

int main() {

A a;

a.f();

cout << a.x << endl;

cout << a.y << endl; // no!!!

a.x = 1000;

a.y = 10000; // no!!!

}

OOP / Slide 24

Some basic member functions:

Constructors for initialisation

Access for accessing member variables

Update for modifying data

I/O and utility functions …

The other (application) functions should be built on

these member functions!

Classification of member functions:

OOP / Slide 25

A more complete definition

class Temperature{

public:

Temperature();

Temperature(double idegree, char iscale);

double getDegree() const;

char getScale() const;

void set(double newDegree, char newScale);

void read();

void print() const;

double fahrenheit();

double celsius();

private:

double degree;

char scale;

};

A complete class should have a complete set of basic member

functions manipulating the class objects

Protection of data: ‘const’ modifier

OOP / Slide 26

Default-Value Constructor

A constructor is a special member function whose name is
always the same as the name of the class.

Temperature::Temperature(){

degree = 0.0;

scale = 'C';

}

A constructor function initializes the data members when a
Temperature object is declared.

Temperature temp3;

OOP / Slide 27

Constructor functions have

no return type (not even void!).

Because a constructor function initializes the
data members, there is no const following its
heading.

‘constructor’ is over-loaded

The constructor function is automatically called
whenever a Temperature class object is
declared.

Remarks on ‘constructor’:

OOP / Slide 28

#include <iostream>
using namespace std;

// definition of Temperature class goes here

void main(){
char resp;
Temperature temp;
do{

cout << "Enter temperature (e.g., 98.6 F): ";
temp.read();
cout << temp.fahrenheit() << “Fahrenheit” << endl;
cout << temp.celsius() << “Celsius” << endl;
cout << endl << endl;
cout << "Another temperature to convert? ";
cin >> resp;

}while(resp == 'y' || resp == 'Y');
}

Application of Temperature class

OOP / Slide 29

‘Smart’ Temperature Object

A smart object should carry within itself the ability

to perform its operations

Operations of Temperature object :

initialize degree and scale with default values

read a temperature from the user and store it

compute the corresponding Fahrenheit temperature

compute the corresponding Celsius temperature

display the degrees and scale to the user

OOP / Slide 30

Overloading

OOP / Slide 31

function overloading

#include <stdio.h>

int max(int a, int b) {

if (a > b) return a;

return b;

}

char* max(char* a, char* b) {

if (strcmp(a, b) > 0) return a;

return b;

}

int main() {

printf("max(19, 69) = %d\n", max(19, 69));

// cout << “max(19, 69) = “ << max(19, 69) << endl;

printf("max(abc, def) = %s\n", max("abc", "def"));

// cout << “max(“abc”, “def”) = “ << max(“abc”, “def”) << endl;

return 0;

}

OOP / Slide 32

Operator Overloading

class Complex {

...

public:

...

Complex operator+(const Complex& op) {

double real = _real + op._real,

imag = _imag + op._imag;

return(Complex(real, imag));

}

...

};

An expression of the form
c = a + b;

is translated into a method call
c = a.operator+(a, b);

To enable conventional notations:

OOP / Slide 33

The overloaded operator may not be a member of a class: It can
rather defined outside the class as a normal overloaded function.

For example, we could define operator + in this way:

class Complex {

...

public:

...

double real() { return _real; }

double imag() { return _imag; }

// No need to define operator here!

};

Complex operator+(Complex& op1, Complex& op2) {

double real = op1.real() + op2.real(),

imag = op1.imag() + op2.imag();

return(Complex(real, imag));

}

Generic programming and
templates

It’s important to know it, though we don’t ask

you to ‘do’ it.

OOP / Slide 35

Templates

A function or a class or a type is parameterized by another type T.

Template or not template, that’s the question of 171!

OOP / Slide 36

Function templates
int max(const int& a, const int& b) {…}

double max(const double& a, const double& b) {…}

string max(const string& a, const string& b) {…}

T max(const T& a, const T& b) {…}

template<typename T>

T max(const T& a, const T& b)

{

if (a>b) return a; else return b;

}

Main()

{

int i=1,j=2;

cout << max(i,j);

string a(“hello”), b(“world);

cout << max(a,b);

}

A parameter T is a type

Also ‘template <class T>’

Function templates:

not functions, patterns or templates

Compiler creates two max() functions: template instantiation

OOP / Slide 37

Class templates
template <typename T>

class A {

public:

A(T data);

~A() { delete x;}

T get() {return *x;}

T set(T data);

private:

T* x;

};

template<typename T>

A<T>::A(T data)

{

X=new; *x=data;

}

tempalte<typename T>

T A<T>::set(T data)

{ *x=data; }

#include <iostream>

#include <string>

using namespace std;

main()

{

A<int> i(5);

A<string> s(“comp171”);

Cout << i.get() << endl;

Cout << s.get() << endl;

i.set(10);

s.set(“CS”);

cout << i.get() << endl;

cout << s.get() << endl;

OOP / Slide 38

Class templates: STL—Standard

Template Library

C type arrays → vectors and strings

Problems with arrays:

Not copied with =

No size

No index checking

We learnd the C++ string class

Vector size is variable …

#include <iostream>

#include <vector>

using namespace std;

main()

{

vector<int> A(100);

For (int i=0; i<A.size();i++) {

A[i] = …;

}

}

OOP / Slide 39

An example of generic linked List

template<typename T>

class Node {

public:

T data;

Node<T>* next;

}

template<typename T>

class List {

Public:

…

Private:

Node<T>* head;

}

struct Node{

public:

int data;

Node* next;

};

typedef Node* Nodeptr;

class listClass {

public:

listClass(); // constructor

listClass(const listClass& list1); // copy constructor

~listClass(); // destructor

bool empty() const; // boolean function

int headElement() const; // access functions

void addHead(int newdata); // add to the head

void delHead(); // delete the head

int length() const; // utility function

void print() const; // output

private:

Nodeptr head;

};

OOP / Slide 40

Separate compilation:

*.h interfaces

Few in procedural programming

Lots in OOP

*.cc implementations

Fewer in OOP

OOP / Slide 41

Other advanced class concepts:

Sub-class, Derived classes, and class

hierarchies (comp151)

→ Polygon → line segment → point

OOP / Slide 42

Friend

A friend of a class can access to its private data

members

class Vector {

friend Vector operator*(const Matrix&, const Vector&);

};

Class Matrix {

friend Vector operator*(const Matrix&, const Vector&);

};

OOP / Slide 43

Summary

A class can be used not only to combine data but also to

combine data and functions into a single (compound)

object.

A member variable or function may be either public or

private

It can be used outside of the class when it’s public

It can only be used by other member functions of the same

class when it’s private

An object of a class can be copied by “=“, memberwise

copy (for static classes)

‘const’ is part of the function definition

A constructor is a member function called automatically

when an object is declared

Each class has to have at least one constructor

Constructors can be overloaded as long as the argument

lists are different

Abstract Data

Type

OOP / Slide 45

What is an abstract data type?

A data type consists of a collection of values together with a set of

basic operations on these values

A data type is an abstract data type if the programmers who use the

type do not have access to the details of how the values and

operations are implemented.

All pre-defined types such as int, double, … are abstract data types

An abstract data type is a ‘concrete’ type, only implementation is

‘abstract’

OOP / Slide 46

Abstract Data Type

An Abstract Data Type is a class with some special

restrictions.

These restrictions can make programming easier.

One of these restrictions is called information hiding,

used as black boxes, hide the implementation details

In information hiding, the user should not be allowed to

access the data members directly (they should be

private).

An Abstract Data Type is used in Object-Oriented

Programming (COMP151).

OOP / Slide 47

How to do it in C++ with classes?

Make all the member variables private

→ private data (implementation details)

Make member functions public

→ public interface

Separate the public interface from implementation,

If you change the implementation, you don’t need to change the

other parts of the programmes.

OOP / Slide 48

Multiplication

Division

Rational Review

Rational number
Ratio of two integers: a/b

Numerator over
the denominator

Standard operations

Addition

Subtraction

a

b
+

c

d
=

ad + bc

bd

a

b
*
c

d
=

ac

bd

a

b
-

c

d
=

ad - bc

bd

a

b
/
c

d
=
ad

bc

OOP / Slide 49

Rational Representation

Represent a numerator and denominator

with two int data members

Numerator and Denominator

Data members private (information hiding)

Public arithmetic member functions

Rational addition, subtraction, multiplication,

division

Public relational member functions

Equality and less than comparisons

OOP / Slide 50

Rational Overview

class Rational {

public:

// for Rational member functions

// for everybody (like "global" variables)

private:

// for Rational data members

// like "local" variables

} ;

OOP / Slide 51

Rational Class
class Rational{

public:

// default-value constructor

Rational();

// explicit-value constructor

Rational(int numer, int denom = 1);

// arithmetic functions

Rational Add(const Rational r) const;

Rational Subtract(const Rational r) const;

Rational Multiply(const Rational r) const;

Rational Divide(const Rational r) const;

// relational functions

bool Equal(const Rational r) const;

bool LessThan(const Rational r) const;

// i/o functions

void Display() const;

void Get();

private: // data members

int Numerator;

int Denominator;

};

OOP / Slide 52

int i;

i=0;

int j;

j=10;

int k;

k=j;

int i(0);

int j(10);

int k(j);

OOP / Slide 53

void main(){

Rational r;

Rational s;

cout << "Enter two rationals(a/b): ";

r.Get();

s.Get();

Rational t(r);

Rational sum = r.Add(s);

r.Display();

cout << " + ";

s.Display();

cout << " = ";

sum.Display(); cout << endl;

Rational product = r.Multiply(s);

r.Display();

cout << " * ";

s.Display();

cout << " = ";

product.Display(); cout << endl;

}

main()

OOP / Slide 54

const

You can use const on user-defined types as usual:

const Rational OneHalf(1,2);

OneHalf.Display(); // no problem

OneHalf.Get(); // illegal: OneHalf is a const

OOP / Slide 55

Implementation of

Rational class

OOP / Slide 56

Default-Value Constructor

// default-value constructor

Rational::Rational(){

Numerator = 0;

Denominator = 1;

}

Example

Rational r; // r = 0/1

OOP / Slide 57

Explicit-Value Constructor

// explicit-value constructor

Rational::Rational(int numer, int denom){

Numerator = numer;

Denominator = denom;

}

Example

Rational t1(2,3); // t1 = 2/3

Rational t2(2); // t2 = 2/1 = 2

Note: the prototype is Rational(int numer, int denom = 1);

OOP / Slide 58

Copy Constructor (automatic)

Example

Rational t1(2,3); // t1 = 2/3

Rational t2(t1); // t2 = 2/3

// copy constructor, automatically provided

Rational::Rational(const Rational& r) {

Numerator = r.Numerator;

Denominator = r.Denominator;

}

Note: very important concept, and it is AUTOMATIC for static classes!

r.Numerator is possible

because it’s in a member

function.

So the private parts can only

be used by member functions.

OOP / Slide 59

Arithmetic Functions

Rational Rational::Add(const Rational r) const{

int a = Numerator;

int b = Denominator;

int c = r.Numerator;

int d = r.Denominator;

Rational result(a*d + b*c, b*d);

return result;

}

Example

Rational t(1,2), u(3, 4);

Rational v = t.Add(u);

OOP / Slide 60

Rational Rational::Multiply(const Rational r) const{

int a = Numerator;

int b = Denominator;

int c = r.Numerator;

int d = r.Denominator;

Rational result(a*c, b*d);

return result;

}

Example

Rational t(1,2), u(3, 4);

Rational v = t.Multiply(u);

OOP / Slide 61

Rational Rational::Subtract(const Rational r) const {

int a = Numerator;

int b = Denominator;

int c = r.Numerator;

int d = r.Denominator;

Rational result(a*d - b*c, b*d);

return result;

}

Example

Rational t(1,2), u(3, 4);

Rational v = t.Subtract(u);

OOP / Slide 62

Rational Rational::Divide(const Rational r) const{

int a = Numerator;

int b = Denominator;

int c = r.Numerator;

int d = r.Denominator;

Rational result(a*d, b*c);

return result;

}

Example

Rational t(1,2), u(3, 4);

Rational v = t.Divide(u);

OOP / Slide 63

Relational Functions

bool Rational::Equal(const Rational r) const{

double a, b;

a = double(Numerator)/Denominator;

b = double(r.Numerator)/r.Denominator;

if(a == b)

return true;

else

return false;

}

Example

if(s.Equal(t))

cout << "They are the same!";

OOP / Slide 64

bool Rational::LessThan(const Rational r) const{

double a, b;

a = double(Numerator)/Denominator;

b = double(r.Numerator)/r.Denominator;

if(a < b)

return true;

else

return false;

}

Example

if(s.LessThan(t))

cout << "The first is less than the second!";

OOP / Slide 65

I/O Functions

void Rational::Display() const{

cout << Numerator << '/' << Denominator;

}

Example

t.Display();

OOP / Slide 66

I/O Functions

void Rational::Get(){

char slash;

cin >> Numerator >> slash >> Denominator;

if(Denominator == 0){

cout << "Illegal denominator of zero, "

<< "using 1 instead" << endl;

Denominator = 1;

}

}

Example

t.Get();

OOP / Slide 67

Rational Representation

Member functions

Constructors

Default-value constructor

Rational r;

Explicit-value constructor

Rational r(3, 4);

Copy constructor (provided automatically:

simply copies data members)

Rational r(t); Rational r = t;

Assignment (provided automatically: simply

copies data members)

r = t;

Inputting and displaying object

initialisation

assignment

OOP / Slide 68

ADT and class

They are different concepts

We use ‘class’ to implement the concept of ‘ADT’

Class can do much more than ADT

…

